
C'è una sola risposta corretta per ogni domanda

Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario

- 1) Per far sì che l'uscita z della rete disegnata sopra vada ad 1 per circa Δ ogni volta che x cambia valore devo inserire al posto di ?? una porta:
 - a) OR
 - b) AND
 - c) XOR
 - d) Nessuna delle precedenti

	00	01	11	10
00	-	0	1	1
01	0	1	0	1
11	0	0	0	0
10	-	1	0	ı

- 2) Nella mappa di Karnaugh sopra disegnata gli implicanti principali essenziali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti
- 3) La sintesi di costo minimo a porte NOR di un'uscita z ha lo stesso costo:
 - a) Della sintesi di costo minimo in forma SP di z.
 - b) Della sintesi di costo minimo in forma SP di \bar{z} .
 - c) Della sintesi di costo minimo in forma PS di \bar{z} .
 - d) Nessuna delle precedenti

- 4) Il blocco di codice scritto sopra copia il valore contenuto nel registro *X* in memoria, all'intervallo di indirizzi *Y*, dove:
 - a) X = %AL, $Y \equiv [d, d + 1023]$
 - b) X = %AX, $Y \equiv [d, d + 2047]$
 - c) X = %EAX, $Y \equiv [d, d + 4095]$
 - d) Nessuna delle precedenti

- 5) Dopo l'istruzione scritta sopra si ha SF=OF quando AL contiene:
 - a) 1111 1111 (*)
 - b) 0111 1111
 - c) Un numero intero
 - d) Nessuna delle precedenti

- 6) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale β^n-2 ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 7) $|a + b c|_{\beta} =$
 - a) = $|a|_{\beta} + |b|_{\beta} |c|_{\beta}$
 - b) = $|a + b c|_{\beta} + \beta$
 - c) = $|a+b-c|_{\beta}$
 - d) Nessuna delle precedenti
- 8) Un sommatore a due cifre in base 10 ha in ingresso $X = 0100 \ 1001$, $Y = 0000 \ 0001$, $C_{in} = 0$. Lo stato di uscita è:
 - a) $Z = 0100 \ 1010, C_{out} = 0, Ow = 0$
 - b) $Z = 0101\ 0000$, $C_{out} = 0$, Ow = 0
 - c) $Z = 0101\ 0000$, $C_{out} = 0$, Ow = 1
 - d) Nessuna delle precedenti
- 9) Devo dividere un naturale X per un divisore $Y \in [3, 15]$. Intendo farlo con un modulo divisore per naturali avente dividendo su 10 bit e divisore su 4 bit. A quale intervallo deve appartenere X perché la divisione sia sempre fattibile?
 - a) $X \equiv [0, 1023]$
 - b) $X \equiv [0, 965]$
 - c) $X \equiv [0, 189]$
 - d) Nessuna delle precedenti
- 10) Dati due interi a, b rappresentati in base 2 su n bit dai naturali A, B, per stabilire se a < b devo guardare:
 - a) L'uscita b_{out} di un sottrattore ad n bit con ingressi A e B
 - b) L'uscita b_{out} di un sottrattore ad n+1 bit con ingressi A e B
 - c) Il MSB della differenza in uscita da un sottrattore ad n + 1 bit con ingressi $A \in B$
 - d) Nessuna delle precedenti

	Domande di Reti Logiche – prima prova in itinere 14/11/2025 – secondo turno
	Cognome e nome:
	Matricola:
♥ - cuori	
▼ - Cuori	

C'è una sola risposta corretta per ogni domanda

Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario

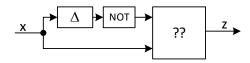
- 1) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale $\beta^{n-1}-3$ ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 2) $|a + b c|_{\beta} =$

a) =
$$|a|_{\beta} + |b|_{\beta} - |c|_{\beta}$$

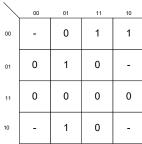
b) =
$$|a + b - c|_{\beta} + \beta$$

c) =
$$|a+b-c|_{\beta}|_{2\beta}$$

- d) Nessuna delle precedenti
- 3) Un sottrattore a due cifre in base 10 ha in ingresso $X = 0101\ 0000$, $Y = 0000\ 0001$, $C_{in} = 0$. Lo stato di uscita è:


a)
$$Z = 0100 \ 1111$$
, $C_{out} = 0$, $Ow = 0$

b)
$$Z = 0100 \ 1001$$
, $C_{out} = 0$, $Ow = 0$


- c) $Z = 0100 \ 1001$, $C_{out} = 0$, Ow = 1
- d) Nessuna delle precedenti
- 4) Devo dividere un naturale X per un divisore $Y \in [2, 15]$. Intendo farlo con un modulo divisore per naturali avente dividendo su 11 bit e divisore su 4 bit. A quale intervallo deve appartenere X perché la divisione sia sempre fattibile?

a)
$$X \equiv [0, 1023]$$

- b) $X \equiv [0, 254]$
- c) $X \equiv [0, 189]$ (*)
- d) Nessuna delle precedenti
- 5) Dati due interi x, y rappresentati in base 2 su n bit dai naturali X, Y, per stabilire se x < y devo guardare:
 - a) L'uscita b_{out} di un sottrattore ad n bit con ingressi X e Y
 - b) L'uscita b_{out} di un sottrattore ad n + 1 bit con ingressi X e Y
 - c) II MSB della differenza in uscita da un sottrattore ad n + 1 bit con ingressi $X \in Y$
 - d) Nessuna delle precedenti

- 6) Per far sì che l'uscita z della rete disegnata sopra vada a 0 per circa Δ ogni volta che x cambia valore devo inserire al posto di ?? una porta:
 - a) OR
 - b) AND
 - c) XNOR
 - d) Nessuna delle precedenti

- 7) Nella mappa di Karnaugh sopra disegnata gli implicanti principali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti
- 8) La sintesi di costo minimo a porte NAND di un'uscita z ha lo stesso costo:
 - a) Della sintesi di costo minimo in forma SP di z.
 - b) Della sintesi di costo minimo in forma SP di \bar{z} .
 - c) Della sintesi di costo minimo in forma PS di \bar{z} .
 - d) Nessuna delle precedenti

9) Il blocco di codice scritto sopra copia il valore contenuto nel registro *X* in memoria, all'intervallo di indirizzi *Y*, dove:

a)
$$X = \%AL, Y \equiv [d, d + 1023]$$

b)
$$X = \%AX$$
, $Y \equiv [d, d + 2047]$

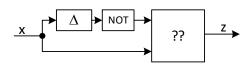
c)
$$X = \%EAX$$
, $Y \equiv [d, d + 4095]$

d) Nessuna delle precedenti

- 10) Dopo l'istruzione scritta sopra si ha SF=OF quando AL contiene:
 - a) 1111 1111 (*)
 - b) 0111 1111
 - c) Un numero intero
 - d) Nessuna delle precedenti

Domande di Reti Logiche – prima prova in itinere 14/11/2025 – secondo turno	
Cognome e nome:	
Matricola:	
♦ - quadri	

C'è **una sola risposta** corretta per ogni domanda Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario


ADD \$1, %AL

- 1) Dopo l'istruzione scritta sopra si ha SF=OF quando AL contiene:
 - a) 1111 1111 (*)
 - b) 0111 1111
 - c) Un numero intero
 - d) Nessuna delle precedenti

- 2) Il blocco di codice scritto sopra copia il valore contenuto nel registro *X* in memoria, all'intervallo di indirizzi *Y*, dove:
 - a) $X = \%AL, Y \equiv [d, d + 1023]$
 - b) $X = \%AX, Y \equiv [d, d + 2047]$
 - c) $X = \%EAX, Y \equiv [d, d + 4095]$
 - d) Nessuna delle precedenti

	00	01	11	10
00	-	0	1	1
01	0	1	0	-
11	0	0	0	0
10	-	1	0	-

- 3) Nella mappa di Karnaugh sopra disegnata gli implicanti principali essenziali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti

- 4) Per far sì che l'uscita z della rete disegnata sopra vada ad 1 per circa Δ ogni volta che x cambia valore devo inserire al posto di ?? una porta:
 - a) OR
 - b) AND
 - c) XOR
 - d) Nessuna delle precedenti
- 5) La sintesi di costo minimo a porte NOR di un'uscita z ha lo stesso costo:
 - a) Della sintesi di costo minimo in forma SP di z.
 - b) Della sintesi di costo minimo in forma SP di \bar{z} .
 - c) Della sintesi di costo minimo in forma PS di \bar{z} .
 - d) Nessuna delle precedenti

- 6) Devo dividere un naturale X per un divisore $Y \in [3, 15]$. Intendo farlo con un modulo divisore per naturali avente dividendo su 10 bit e divisore su 4 bit. A quale intervallo deve appartenere X perché la divisione sia sempre fattibile?
 - a) $X \equiv [0, 1023]$
 - b) $X \equiv [0, 965]$
 - c) $X \equiv [0, 189]$
 - d) Nessuna delle precedenti

7)
$$|a + b - c|_{\beta} =$$

a) =
$$|a|_{\beta} + |b|_{\beta} - |c|_{\beta}$$

b) =
$$|a + b - c|_{\beta} + \beta$$

c) =
$$|a+b-c|_{\beta}|_{2\beta}$$

- d) Nessuna delle precedenti
- 8) Nella rappresentazione in base $\beta>2$ (β pari) su n>2 cifre del numero naturale β^n-2 ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 9) Dati due interi a, b rappresentati in base 2 su n bit dai naturali A, B, per stabilire se a < b devo guardare:
- a) L'uscita b_{out} di un sottrattore ad n bit con ingressi $A \in B$
 - b) L'uscita b_{out} di un sottrattore ad n + 1 bit con ingressi $A \in B$
 - c) II MSB della differenza in uscita da un sottrattore ad n+1 bit con ingressi $A \in B$
 - d) Nessuna delle precedenti
- 10) Un sommatore a due cifre in base 10 ha in ingresso $X = 0100\ 1001$, $Y = 0000\ 0001$, $C_{in} = 0$. Lo stato di uscita è:

a)
$$Z = 0100 \ 1010, C_{out} = 0, Ow = 0$$

b)
$$Z = 0101\ 0000$$
, $C_{out} = 0$, $Ow = 0$

c)
$$Z = 01010000$$
, $C_{out} = 0$, $Ow = 1$

d) Nessuna delle precedenti

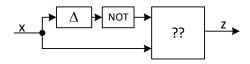
	Domande di Reti Logiche – prima prova in itinere 14/11/2025 – secondo turno
	Cognome e nome:
	Matricola:
♣ - fiori	

C'è una sola risposta corretta per ogni domanda

Lo spazio bianco sul retro del foglio può essere usato per scrivere se necessario

MOV \$1024, %ECX LEA d, %EDI CLD REP STOSL

- 1) Il blocco di codice scritto sopra copia il valore contenuto nel registro *X* in memoria, all'intervallo di indirizzi *Y*, dove:
 - a) $X = \%AL, Y \equiv [d, d + 1023]$
 - b) X = %AX, $Y \equiv [d, d + 2047]$
 - c) X = %EAX, $Y \equiv [d, d + 4095]$
 - d) Nessuna delle precedenti


ADD \$1, %AL

- 2) Dopo l'istruzione scritta sopra si ha SF=OF quando AL contiene:
 - a) 1111 1111 (*)
 - b) 0111 1111
 - c) Un numero intero
 - d) Nessuna delle precedenti
- 3) Nella rappresentazione in base $\beta > 2$ (β pari) su n > 2 cifre del numero naturale $\beta^{n-1} 3$ ci sono
 - a) n cifre diverse da 0
 - b) n-1 cifre diverse da 0
 - c) 1 cifra diversa da 0
 - d) Nessuna delle precedenti
- 4) $|a + b c|_{\beta} =$
 - a) = $|a|_{\beta} + |b|_{\beta} |c|_{\beta}$
 - b) = $|a + b c|_{\beta} + \beta$
 - c) = $|a+b-c|_{\beta}$
 - d) Nessuna delle precedenti
- 5) Un sottrattore a due cifre in base 10 ha in ingresso $X = 0101\ 0000$, $Y = 0000\ 0001$, $C_{in} = 0$. Lo stato di uscita è:
 - a) $Z = 0100 \ 1111$, $C_{out} = 0$, Ow = 0
 - b) $Z = 0100 \ 1001, C_{out} = 0, Ow = 0$
 - c) $Z = 0100 \ 1001$, $C_{out} = 0$, Ow = 1
 - d) Nessuna delle precedenti
- 6) Devo dividere un naturale X per un divisore $Y \in [2, 15]$. Intendo farlo con un modulo divisore per naturali avente dividendo su 11 bit e divisore su 4 bit. A quale intervallo deve appartenere X perché la divisione sia sempre fattibile?
 - a) $X \equiv [0, 1023]$
 - b) $X \equiv [0, 254]$
 - c) $X \equiv [0, 189]$ (*)
 - d) Nessuna delle precedenti

- 7) Dati due interi x, y rappresentati in base 2 su n bit dai naturali X, Y, per stabilire se x < y devo guardare:
 - a) L'uscita b_{out} di un sottrattore ad n bit con ingressi X e Y
 - b) L'uscita b_{out} di un sottrattore ad n + 1 bit con ingressi X e Y
 - c) II MSB della differenza in uscita da un sottrattore ad n + 1 bit con ingressi $X \in Y$
 - d) Nessuna delle precedenti

	00	01	11	10
00	-	0	1	1
01	0	1	0	ı
11	0	0	0	0
10	-	1	0	-

- 8) Nella mappa di Karnaugh sopra disegnata gli implicanti principali sono
 - a) 1
 - b) 2
 - c) 3
 - d) Nessuna delle precedenti

- 9) Per far sì che l'uscita z della rete disegnata sopra vada a 0 per circa Δ ogni volta che x cambia valore devo inserire al posto di ?? una porta:
 - a) OR
 - b) AND
 - c) XNOR
 - d) Nessuna delle precedenti
- 10) La sintesi di costo minimo a porte NAND di un'uscita *z* ha lo stesso costo:
 - a) Della sintesi di costo minimo in forma SP di z.
 - b) Della sintesi di costo minimo in forma SP di \bar{z} .
 - c) Della sintesi di costo minimo in forma PS di \bar{z} .
 - d) Nessuna delle precedenti

Domande di Reti Logiche – prima prova in itinere 14/11/2025 – secondo turno
Cognome e nome:
Matricola:
♠ - picche